Turning ideas into medicines: The Alzheimer's Research UK Cambridge Drug Discovery Institute

John Skidmore SciBar Cambridge 12th September 2017

Dementia

Dementia – a global crisis

What is dementia?

A collection of symptoms, including a decline in memory, reasoning and communication skills, and a gradual loss of skills needed to carry out daily activities.

Dementia isn't an inevitable part of ageing

Why does dementia pose such a challenge?

- Dementia is caused by physical and progressive brain diseases.
- Changes in the brain can occur long before symptoms start to show.
- Results from a complex mix of genetic and environmental risk factors which interact over a lifetime.
- Complicated by other processes or conditions which can also accompany the ageing process

Symptoms of dementia

Alzheimer's disease

Temporal lobe & hippocampus Vision Ornering Emallions Language Body Benaviuur Personality Memory Awareness

Frontotemporal dementia

Dementia with Lewy bodies

Vascular dementia

What causes Dementia?

What are the risk factors?

- Biggest risk factor is age
- Genetics
 - **Faulty gene** causes disease in familial early-onset Alzheimer's (>1%) and in frontotemporal dementia (around 10%).
 - Risk genes common in the population and normally have a relatively small effect on risk on their own. Linked to late-onset Alzheimer's and other dementias.

Lifestyle risk factors

- Biggest risk factor is age.
- · Genetics.
- Lifestyle.

Learning another language 'could protect against dementia'

Chicken, fish and nuts could beat Alzheimer's Ditch that crossword and take a walk if you want to beat dementia

Exercising in your 70s 'may stop brain shrinkage'

Berries 'might slow mental decline'

Where is the evidence?

What is good for your heart is good for your head.
 Vascular risk factors:

Lack of exercise	Poor diet
Obesity	Heavy alcohol intake
High blood pressure	High cholesterol
Smoking	Diabetes

Suggested additional risk factors:

Lack of social	Low educational
engagement	attainment
Depression	Head injury

What causes dementia?

• Damage to blood vessels – stroke, small vessel disease

What causes dementia?

- Damage to blood vessels stroke, small vessel disease.
- Build-up of abnormal proteins in the brain.

What causes dementia?

- Damage to blood vessels stroke, small vessel disease.
- Build-up of abnormal proteins in the brain
- Changes in the immune system, metabolism, other brain cells.

What Causes AD – cascade of events

Cellular Cascade

- Misfolding proteins cause stress
- Disturbs normal behaviour of the cell
- Involves other brain cells (astrocytes, microglia) and blood vessels
- Feedback and feedforward loops – progression may no longer require the plaques and tangles

Progression of AD over time

Research into the causes of dementia

- What time do these events start?
- Which events are the most toxic?
- How do we stop them?

£14.7m research fundamental biology of dementia

Current treatments for Alzheimer's Disease

- Current treatments help with symptoms
- Donepezil, rivastigmine, galantamine, memantine
- There are no treatments that can slow or stop the disease process

What are medicines?

How do they work?

How do we discover invent them?

Designing a medicine for dementia

Proteins – thousands of large molecules with different functions in our bodies

Disease – often caused by malfunctioning proteins

Drug – usually binds to a particular type of protein and changes its function

Medicine – a drug designed to treat disease

1. Activity

- Strong interaction with target protein
- Limited interactions with other targets

2. Pharmacokinetics

- Gets into the blood when taken as a pill
- Not degraded by enzymes in liver or blood

3. Can get into the brain

Brain has special protective "blood-brain barrier"

4. Safe

- No toxic side effects
- No interactions with other drugs

How are we working to find medicines to treat dementia?

Who discovers a drug?

Not-for-Profit
Drug Discovery

Time and money

The Alzheimer's Research UK Drug Discovery Alliance

- Three independent drug discovery institutes
- Each led by a Chief Scientific Officer and one or more Lead Academics
- Interacting directly and through the coordination of ARUK

The role of the Drug Discovery Alliance

Mission:

- Take the latest science into dementia and turn it into new drug discovery projects
- Generate molecules that are the seeds for the next generation of medicines
- Explore new and exciting areas not yet investigated by industry

Funding: £30M over 5 years

What will happen to our projects?

What will happen next?

- Our molecules will be optimised to find new drugs which will be ready for clinical trials
- To do this will will partner our projects with industry or get further funding to support late-stage drug discovery
- The University can help run clinical trials to get our new drugs to the patients that need them.

Proteasomal clearance Unfolded Neuronal protein cell response Protein synthesis Unfolded Folded Misfolded Protein oligomer protein protein aggregate protein Autophagy Lysosome Autophagosome Autolysosome

Our focus on proteostasis

The Cambridge DDI is exploring approaches to stopping the formation of the misfolded proteins for diseases such as Alzheimer's, Parkinson's and Lewy Body disease and Huntington's

The misfolding process

Autophagy... taking out the trash

Autophagy

Autophagosome

Autolysosome

protein

protein

Lysosome

Prof. David Rubinsztein

University of Cambridge

Cambri

Prof. Rubinsztein is studying autophagy

- Process by which the brain can destroy and recycle of the misfolded proteins
- We are searching for drugs that will turn on autophagy

Huntington's Disease

Alzheimer's Disease

Questions?

